On the third secant variety

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the third secant variety

We determine normal forms and ranks of tensors of border rank at most three. We present a differential-geometric analysis of limits of secant planes in a more general context. In particular there are at most four types of points on limiting trisecant planes for cominuscule varieties such as Grassmannians. We also show that the singular locus of the secant varieties σr(Seg(P × P × P)) has codime...

متن کامل

ON THE CONCEPT OF k-SECANT ORDER OF A VARIETY

For a variety X of dimension n in Pr, r n(k + 1) + k, the kth secant order of X is the number μk(X) of (k + 1)-secant k-spaces passing through a general point of the kth secant variety. We show that, if r > n(k + 1) + k, then μk(X) = 1 unless X is k-weakly defective. Furthermore we give a complete classification of surfaces X ⊂ Pr, r > 3k + 2, for which μk(X) > 1.

متن کامل

Syzygies of the Secant Variety of a Curve

We show the secant variety of a linearly normal smooth curve of degree at least 2g + 3 is arithmetically Cohen-Macaulay, and we use this information to study the graded Betti numbers of the secant variety.

متن کامل

Generation and Syzygies of the First Secant Variety

We show that the secant variety to a smooth variety embedded by a sufficiently positive line bundle satisfies N3,p. For smooth curves, we find the effective bound of degree at least max ̆ 3g + 3 + p, 1 2 (7g + 4 + p) ̄

متن کامل

Regularity of the Secant Variety to a Projective Curve

We give a sharp bound on the regularity of the secant variety to a smooth curve embedded by a line bundle of large (effective) degree.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2014

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-013-0495-0